Where and when (not) to eat in France?

To eat or not to eat…
R
datavisualization
spatial
Author

Michaël

Published

2023-04-16

Modified

2024-11-22

Results of sanitary controls in France can be found on data.gouv.fr however, only the running year is available… Thanks to @cquest@amicale.net we can access the archives since 2017.

Config and data cleaning

Code
library(tidyverse)
library(janitor)
library(fs)
library(sf)
library(glue)
library(ggspatial)
library(rnaturalearth)
library(patchwork)

# smoothing
source(glue("fonctions_lissage.R"), encoding = "UTF-8")

# move DROM
source(glue("translation.R"), encoding = "UTF-8")

# params ------------------------------------------------------------------

rayon <- 30000 # smoothing radius (m)
pixel <- 2000  # pixel resolution output for smoothing (m)
proj_liss <- "EPSG:3035" # an equal area projection
Code
# 2017-2018 : yearly archive ; extract the last doy export
# 
# http://data.cquest.org/alim_confiance/exports_alim_confiance_2017.7z
#  -> export_alimconfiance_2017-12-31.csv
# http://data.cquest.org/alim_confiance/exports_alim_confiance_2018.7z
#  -> export_alimconfiance_2018-12-31.csv
alim_dcq <- dir_ls("data/data.cquest.org", regexp = "\\.csv") |> 
  map_dfr(read_csv2) |> 
  clean_names()  

# 2019-2023
# archives at the end of each year + last export
# 
# http://files.opendatarchives.fr/dgal.opendatasoft.com/archives/export_alimconfiance/20191231T053939Z%20export_alimconfiance.csv.gz
# http://files.opendatarchives.fr/dgal.opendatasoft.com/archives/export_alimconfiance/20201231T083455Z%20export_alimconfiance.csv.gz
# http://files.opendatarchives.fr/dgal.opendatasoft.com/archives/export_alimconfiance/20211231T083316Z%20export_alimconfiance.csv.gz
# http://files.opendatarchives.fr/dgal.opendatasoft.com/archives/export_alimconfiance/20221231T150844Z%20export_alimconfiance.csv.gz
# http://files.opendatarchives.fr/dgal.opendatasoft.com/export_alimconfiance.csv.gz
alim_oda <- dir_ls("data/files.opendatarchives.fr", regexp = "\\.csv") |> 
  map_dfr(read_csv2) |> 
  clean_names() |> 
  distinct() |> 
  filter(date_inspection < "2023-03-01")

# https://datanova.laposte.fr/explore/dataset/laposte_hexasmal/download?format=shp
cp <- read_sf("~/data/laposte/laposte_hexasmal.shp")

# Built from IGN Adminexpress. Get the data :
# https://r.iresmi.net/posts/2021/simplifying_polygons_layers/results/adminexpress_simpl_2022.zip
dep <- read_sf("~/data/adminexpress/adminexpress_cog_simpl_000_2022.gpkg", 
               layer = "departement") |> 
  translater_drom(ajout_zoom_pc = TRUE)

reg_fx <- read_sf("~/data/adminexpress/adminexpress_cog_simpl_000_2022.gpkg", 
               layer = "region") |> 
  filter(insee_reg > "06")

fx <- read_sf("~/data/adminexpress/adminexpress_cog_simpl_000_2022.gpkg", 
              layer = "region") |> 
  filter(insee_reg > "06") |> 
  summarise() |> 
  st_transform(proj_liss)

# projection names
nom_proj_liss <- str_extract(st_crs(fx)$wkt, '(?<=PROJCRS\\[").*(?=",)')
nom_proj_legale <- str_extract(st_crs(dep)$wkt, '(?<=PROJCRS\\[").*(?=",)')

# basemap
countries <- ne_countries(50, returnclass = "sf") |> 
  filter(admin != "France")
Code
alim_raw <- bind_rows(alim_dcq,
                      alim_oda) |> 
  mutate(insee_dep = case_when(str_sub(code_postal, 1, 2) >= "97" ~ str_sub(code_postal, 1, 3), 
                         str_sub(code_postal, 1, 3) %in% c("200", "201") ~ "2A",
                         str_sub(code_postal, 1, 3) %in% c("202", "206") ~ "2B",
                         TRUE ~ str_sub(code_postal, 1, 2)))


# trying to add coordinates to unknown locations using postal codes
# only 5800 on 7500
georef <- cp |> 
  group_by(code_postal) |> 
  summarise(geometry = first(geometry)) |> 
  inner_join(alim_raw |> 
              filter(is.na(geores),
                     !is.na(code_postal)),
             by = "code_postal")

# build sf object
alim <- alim_raw |> 
  filter(!is.na(geores)) |> 
  separate(geores, c("y", "x"), sep = ",") |> 
  st_as_sf(coords = c("x", "y"), crs = "EPSG:4326") |> 
  bind_rows(georef) 

alim |> 
  write_sf(glue("results/alim.gpkg"))

Exploring data

First a global view of the dataset:

Code
alim |> 
  st_drop_geometry() |> 
  count(annee = year(date_inspection), 
        semaine = isoweek(date_inspection)) |> 
  ggplot(aes(semaine, n, group = annee, color = as_factor(annee))) +
  geom_point() +
  geom_smooth(span = 0.4) +
  scale_y_continuous(labels = scales::label_number(big.mark = " ")) +
  labs(title = "Contrôles officiels sanitaires",
       subtitle = "France - 2017-2023",
       color = "année") +
  guides(color = guide_legend(reverse=TRUE))
A scatter plot with smoothed lines showing the number of controls by week and year
Figure 1: Overview by week

About 800 controls per week, except during the lock-down in 2020, and a slightly lower control pressure in 2021 and 2022.

Code
alim |> 
  st_drop_geometry() |> 
  group_by(annee = year(date_inspection)) |> 
  summarise(pcent_neg = sum(synthese_eval_sanit %in% c("A améliorer", "A corriger de manière urgente")) / n()) |> 
  ggplot(aes(annee, pcent_neg)) +
  geom_col() +
  scale_y_continuous(breaks = scales::breaks_pretty(), 
                     labels = scales::label_percent(decimal.mark = ",", suffix = " %")) +
  labs(title = "Résultats des contrôles officiels sanitaires",
       subtitle = "France - 2017-2023",
       x = "année",
       y = "% mauvais",
       caption = glue("https://r.iresmi.net/
                     données : Alim'confiance via opendatarchives.fr
                     mauvais = 'À améliorer' ou 
                       'À corriger de manière urgente'")) +
  theme(panel.grid.major.x = element_blank(),
        panel.grid.minor.x = element_blank(),
        axis.ticks.x = element_blank(),
        plot.caption = element_text(size = 7))
A bar plot of bad controls by year
Figure 2: Yearly

Poor results (To be improved or To be corrected urgently) are stable at around 6 %, except a recent spike in 2023?

Code
alim |> 
  st_drop_geometry() |> 
  group_by(mois = ymd(paste0("2020", str_pad(month(date_inspection), 2, "left", "0"), "01"))) |> 
  summarise(pcent_neg = sum(synthese_eval_sanit %in% c("A améliorer", "A corriger de manière urgente")) / n()) |> 
  ggplot(aes(mois, pcent_neg)) +
  geom_col() +
  scale_x_date(date_labels = "%b", date_breaks = "2 months", expand = c(0.01, 0.01)) +
  scale_y_continuous(breaks = scales::breaks_pretty(), 
                     labels = scales::percent_format(decimal.mark = ",", suffix = " %")) +
  labs(title = "Résultats des contrôles officiels sanitaires",
       subtitle = "France - 2017-2023",
       y = "% mauvais",
       caption = glue("https://r.iresmi.net/
                     données : Alim'confiance via opendatarchives.fr
                     mauvais = 'À améliorer' ou 
                       'À corriger de manière urgente'")) +
  theme(panel.grid.major.x = element_blank(),
        panel.grid.minor.x = element_blank(),
        axis.ticks.x = element_blank(),
        plot.caption = element_text(size = 7))
A bar plot of bad controls by month
Figure 3: Monthly

It seems that poor results increase during the year, from June to November.

This surprising periodic phenomenon is also visible by day:

Code
alim |> 
  st_drop_geometry() |> 
  group_by(date_inspection = as.Date(date_inspection)) |> 
  summarise(pcent_neg = sum(synthese_eval_sanit %in% c("A améliorer", "A corriger de manière urgente")) / n()) |> 
  ggplot(aes(date_inspection, pcent_neg)) +
  geom_point() +
  geom_smooth(method = "gam", formula = y ~ s(x, bs = "cs", k = 30)) +
  scale_x_date(labels = ~ format(.x, "%b\n%Y"), date_breaks = "6 months") +
  scale_y_continuous(breaks = scales::breaks_pretty(), 
                     labels = scales::percent_format(decimal.mark = ",", suffix = " %")) +
  labs(title = "Résultats des contrôles officiels sanitaires",
       subtitle = "France - 2017-2023",
       x = "jour",
       y = "% mauvais",
       caption = glue("https://r.iresmi.net/
                     données : Alim'confiance via opendatarchives.fr
                     mauvais = 'À améliorer' ou 
                       'À corriger de manière urgente'")) +
  theme(plot.caption = element_text(size = 7))
A bar plot of bad controls by day with a smooth line
Figure 4: Daily

So for the « when », it is: not in summer or autumn.

Maps

What about the « where »? It seems you also could be careful in some départements…

Code
bilan_dep <- alim |> 
  st_drop_geometry() |> 
  group_by(insee_dep) |> 
  summarise(pcent_neg = sum(synthese_eval_sanit %in% c("A améliorer", "A corriger de manière urgente")) / n() * 100) |> 
  arrange(desc(pcent_neg))

dep |> 
  left_join(bilan_dep, by = "insee_dep") |> 
  ggplot() +
  geom_sf(aes(fill = pcent_neg), color = "white", linewidth = 0.05) +
  geom_sf(data = reg_fx, fill = NA, color = "white", linewidth = .1) +
  scale_fill_viridis_b("% mauvais", breaks = c(2, 5, 10, 15), na.value = NA) +
  labs(title = "Résultats des contrôles officiels sanitaires",
       subtitle = "France - 2017-2023",
       caption = glue("https://r.iresmi.net/
                     données : Alim'confiance via opendatarchives.fr
                     mauvais = 'À améliorer' ou 
                       'À corriger de manière urgente'
                     proj. métropole {nom_proj_legale}
                     fond carto. : d'après IGN adminexpress")) +
  theme_void() +
  theme(plot.caption = element_text(size = 7))
A map of bad controls by département of France
Figure 5: All controls (by dép.)

Not good in Guadeloupe, Guyane, Réunion and the southern lower Seine valley, west of Paris.

Can we see more in details? Using a 30 km kernel smoothing:

Code
lissage_alim <- function(annee = NULL) {
  if (is.null(annee)) {
    alim <- alim |> 
      filter(insee_dep < "97") |> 
      mutate(poids = 1)
    
    annee_titre <- glue("{year(min(alim$date_inspection))}-{year(max(alim$date_inspection))}")
  } else {
    alim <- alim |> 
      filter(insee_dep < "97",
             year(date_inspection) == annee) |> 
      mutate(poids = 1)
    
    annee_titre <- annee
  }
  
  smooth_total <- alim |> 
    lissage(poids, rayon, pixel, zone = fx) 
  
  smooth_mauvais <- alim |> 
    filter(synthese_eval_sanit %in% c("A améliorer", "A corriger de manière urgente")) |> 
    lissage(poids, bandwidth = rayon, resolution = pixel, zone = fx) 
  
  pcent_mauvais <- smooth_mauvais / smooth_total * 100

  raster::writeRaster(pcent_mauvais,
                    glue("results/alimconfiance_pcent_mauvais_{annee_titre}_fx.tif"), 
                    overwrite = TRUE)
  
  p <- ggplot() +
    geom_sf(data = countries, color = "grey", fill = "white") +
    layer_spatial(as(pcent_mauvais, "SpatRaster")) +
    geom_sf(data = dep, fill = NA, color = "white", linewidth = .05) +
    geom_sf(data = reg_fx, fill = NA, color = "white", linewidth = .1) +
    scale_fill_viridis_b("% mauvais", breaks = c(2, 5, 10, 15), na.value = NA) +
    coord_sf(xlim = st_bbox(pcent_mauvais)[c(1, 3)], 
             ylim = st_bbox(pcent_mauvais)[c(2, 4)],
             crs = proj_liss) +
    theme_void() +
    theme(plot.caption = element_text(size = 7))
  
  if (!is.null(annee)) {
    p +
      labs(title = glue("{annee_titre} - {format(nrow(alim), big.mark = ' ')} inspections"))
  } else {
    p +
      annotation_scale(height = unit(0.1, "cm"),
                       bar_cols = c("grey", "white"),
                       text_col = "grey",
                       line_col = "grey") +
      labs(title = "Résultats des contrôles officiels sanitaires",
           subtitle = glue("France métropolitaine - {annee_titre}"),
           caption = glue("https://r.iresmi.net/
                       données : Alim'confiance via opendatarchives.fr
                       mauvais = 'À améliorer' ou 
                         'À corriger de manière urgente'
                       lissage à {rayon / 1000} km
                       proj. {nom_proj_liss}
                       fond carto. : d'après IGN adminexpress")) 
  }
}

lissage_alim()
A map of bad controls in France (with kernel smoothing)
Figure 6: All controls (smoothed)

It confirms some hot-spots west of Paris, in Alsace, in Indre, Cher, Alpes-Maritimes and between Gironde and Landes. You are safer in Paris and Bretagne…

Has it changed?

Code
2018:(year(max(alim$date_inspection)) - 1) |> 
  map(lissage_alim) |>
  reduce(`+`) +
  plot_layout(ncol = 3,
              guides = "collect") +
  plot_annotation(
    title = "Résultats des contrôles officiels sanitaires - France métropolitaine",
    caption = glue("https://r.iresmi.net/
                       données : Alim'confiance via opendatarchives.fr
                       mauvais = 'À améliorer' ou 
                         'À corriger de manière urgente'
                       lissage à {rayon / 1000} km
                       proj. {nom_proj_liss}
                       fond carto. : d'après IGN adminexpress")) &
  theme(plot.caption = element_text(size = 7), 
        plot.title =  element_text(size = 10))
A small multiple map of bad controls in France (with kernel smoothing) by year
Figure 7: Evolution 2018-2022

No real trend…